Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Bio Protoc ; 11(10): e4026, 2021 May 20.
Article in English | MEDLINE | ID: covidwho-2326148

ABSTRACT

The recombinant receptor-binding domain (RBD) of the viral spike protein from SARS-CoV-1 and 2 are reliable antigens for detecting viral-specific antibodies in humans. We and others have shown that the levels of RBD-binding antibodies and SARS-CoV-2 neutralizing antibodies in patients are correlated. Here, we report the expression and purification of properly folded RBD proteins from SARS and common-cold HCoVs in mammalian cells. RBD proteins were produced with cleavable tags for affinity purification from the cell culture medium and to support multiple immunoassay platforms and drug discovery efforts. Graphic abstract: High-Yield Production of Viral Spike RBDs for Diagnostics and Drug Discovery.

2.
PLoS One ; 17(12): e0277707, 2022.
Article in English | MEDLINE | ID: covidwho-2154286

ABSTRACT

Amidst the therapeutic void at the onset of the COVID-19 pandemic, a critical mass of scientific and clinical interest coalesced around COVID-19 convalescent plasma (CCP). To date, the CCP literature has focused largely on safety and efficacy outcomes, but little on implementation outcomes or experience. Expert opinion suggests that if CCP has a role in COVID-19 treatment, it is early in the disease course, and it must deliver a sufficiently high titer of neutralizing antibodies (nAb). Missing in the literature are comprehensive evaluations of how local CCP programs were implemented as part of pandemic preparedness and response, including considerations of the core components and personnel required to meet demand with adequately qualified CCP in a timely and sustained manner. To address this gap, we conducted an evaluation of a local CCP program at a large U.S. academic medical center, the University of North Carolina Medical Center (UNCMC), and patterned our evaluation around the dimensions of the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to systematically describe key implementation-relevant metrics. We aligned our evaluation with program goals of reaching the target population with severe or critical COVID-19, integrating into the structure of the hospital-wide pandemic response, adapting to shifting landscapes, and sustaining the program over time during a compassionate use expanded access program (EAP) era and a randomized controlled trial (RCT) era. During the EAP era, the UNCMC CCP program was associated with faster CCP infusion after admission compared with contemporaneous affiliate hospitals without a local program: median 29.6 hours (interquartile range, IQR: 21.2-48.1) for the UNCMC CCP program versus 47.6 hours (IQR 32.6-71.6) for affiliate hospitals; (P<0.0001). Sixty-eight of 87 CCP recipients in the EAP (78.2%) received CCP containing the FDA recommended minimum nAb titer of ≥1:160. CCP delivery to hospitalized patients operated with equal efficiency regardless of receiving treatment via a RCT or a compassionate-use mechanism. It was found that in a highly resourced academic medical center, rapid implementation of a local CCP collection, treatment, and clinical trial program could be achieved through re-deployment of highly trained laboratory and clinical personnel. These data provide important pragmatic considerations critical for health systems considering the use of CCP as part of an integrated pandemic response.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/therapy , Academic Medical Centers , Plasma , Pandemics , Antibodies, Neutralizing
3.
mBio ; 13(5): e0175122, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2038241

ABSTRACT

COVID-19 convalescent plasma (CCP) was an early and widely adopted putative therapy for severe COVID-19. Results from randomized control trials and observational studies have failed to demonstrate a clear therapeutic role for CCP for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Underlying these inconclusive findings is a broad heterogeneity in the concentrations of neutralizing antibodies (nAbs) between different CCP donors. We conducted this study to evaluate the effectiveness and safety of nAb titer-defined CCP in adults admitted to an academic referral hospital. Patients positive by a SARS-CoV-2 nucleic acid amplification test and with symptoms for <10 days were eligible. Participants received either CCP with nAb titers of >1:640 (high-titer group) or ≥1:160 to 1:640 (standard-titer group) in addition to standard of care treatments. The primary clinical outcome was time to hospital discharge, with mortality and respiratory support evaluated as secondary outcomes. Adverse events were contrasted by CCP titer. Between 28 August and 4 December 2020, 316 participants were screened, and 55 received CCP, with 14 and 41 receiving high- versus standard-titer CCP, respectively. Time to hospital discharge was shorter among participants receiving high- versus standard-titer CCP, accounting for death as a competing event (hazard ratio, 1.94; 95% confidence interval [CI], 1.05 to 3.58; Gray's P = 0.02). Severe adverse events (SAEs) (≥grade 3) occurred in 4 (29%) and 23 (56%) of participants receiving the high versus standard titer, respectively, by day 28 (risk ratio, 0.51; 95% CI, 0.21 to 1.22; Fisher's P = 0.12). There were no observed treatment-related AEs. (This study has been registered at ClinicalTrials.gov under registration no. NCT04524507). IMPORTANCE In this study, in a high-risk population of patients admitted for COVID-19, we found an earlier time to hospital discharge among participants receiving CCP with nAb titers of >1:640 compared with participants receiving CCP with a lower nAb titer and no CCP-related AEs. The significance of our research is in identifying a dose response of CCP and clinical outcomes based on nAb titer. Although limited by a small study size, these findings support further study of high-nAb-titer CCP defined as >1:640 in the treatment of COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Immunization, Passive/methods
4.
mSphere ; 7(3): e0084121, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1854244

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths around the world within the past 2 years. Transmission within the United States has been heterogeneously distributed by geography and social factors with little data from North Carolina. Here, we describe results from a weekly cross-sectional study of 12,471 unique hospital remnant samples from 19 April to 26 December 2020 collected by four clinical sites within the University of North Carolina Health system, with a majority of samples from urban, outpatient populations in central North Carolina. We employed a Bayesian inference model to calculate SARS-CoV-2 spike protein immunoglobulin prevalence estimates and conditional odds ratios for seropositivity. Furthermore, we analyzed a subset of these seropositive samples for neutralizing antibodies. We observed an increase in seroprevalence from 2.9 (95% confidence interval [CI], 1.8 to 4.5) to 12.8 (95% CI, 10.6 to 15.2) over the course of the study. Latinx individuals had the highest odds ratio of SARS-CoV-2 exposure at 6.56 (95% CI, 4.66 to 9.44). Our findings aid in quantifying the degree of asymmetric SARS-CoV-2 exposure by ethnoracial grouping. We also find that 49% of a subset of seropositive individuals had detectable neutralizing antibodies, which was skewed toward those with recent respiratory infection symptoms. IMPORTANCE PCR-confirmed SARS-CoV-2 cases underestimate true prevalence. Few robust community-level SARS-CoV-2 ethnoracial and overall prevalence estimates have been published for North Carolina in 2020. Mortality has been concentrated among ethnoracial minorities and may result from a high likelihood of SARS-CoV-2 exposure, which we observe was particularly high among Latinx individuals in North Carolina. Additionally, neutralizing antibody titers are a known correlate of protection. Our observation that development of SARS-CoV-2 neutralizing antibodies may be inconsistent and dependent on severity of symptoms makes vaccination a high priority despite prior exposure.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Bayes Theorem , COVID-19/epidemiology , Cross-Sectional Studies , Humans , North Carolina/epidemiology , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
5.
PLoS One ; 17(4): e0267353, 2022.
Article in English | MEDLINE | ID: covidwho-1808575

ABSTRACT

BACKGROUND: Early in the pandemic, transmission risk from asymptomatic infection was unclear, making it imperative to monitor infection in workplace settings. Further, data on SARS-CoV-2 seroprevalence within university populations has been limited. METHODS: We performed a longitudinal study of University research employees on campus July-December 2020. We conducted questionnaires on COVID-19 risk factors, RT-PCR testing, and SARS-CoV-2 serology using an in-house spike RBD assay, laboratory-based Spike NTD assay, and standard nucleocapsid platform assay. We estimated prevalence and cumulative incidence of seroconversion with 95% confidence intervals using the inverse of the Kaplan-Meier estimator. RESULTS: 910 individuals were included in this analysis. At baseline, 6.2% (95% CI 4.29-8.19) were seropositive using the spike RBD assay; four (0.4%) were seropositive using the nucleocapsid assay, and 44 (4.8%) using the Spike NTD assay. Cumulative incidence was 3.61% (95% CI: 2.04-5.16). Six asymptomatic individuals had positive RT-PCR results. CONCLUSIONS: Prevalence and incidence of SARS-CoV-2 infections were low; however, differences in target antigens of serological tests provided different estimates. Future research on appropriate methods of serological testing in unvaccinated and vaccinated populations is needed. Frequent RT-PCR testing of asymptomatic individuals is required to detect acute infections, and repeated serosurveys are beneficial for monitoring subclinical infection.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Longitudinal Studies , Pandemics , Prospective Studies , SARS-CoV-2/genetics , Seroepidemiologic Studies
6.
Epidemiol Infect ; 149: e247, 2021 10 20.
Article in English | MEDLINE | ID: covidwho-1692716

ABSTRACT

In a Nicaraguan population-based cohort, SARS-CoV-2 seroprevalence reached 28% in the first 6 months of the country's epidemic and reached 35% 6 months later. Immune waning was uncommon. Individuals with a seropositive household member were over three times as likely to be seropositive themselves, suggesting the importance of household transmission.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Middle Aged , Nicaragua/epidemiology , Prevalence , Seroepidemiologic Studies , Urban Population/statistics & numerical data , Young Adult
7.
Cell Rep ; 38(5): 110336, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1661802

ABSTRACT

Understanding vaccine-mediated protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is critical to overcoming the global coronavirus disease 2019 (COVID-19) pandemic. We investigate mRNA-vaccine-induced antibody responses against the reference strain, seven variants, and seasonal coronaviruses in 168 healthy individuals at three time points: before vaccination, after the first dose, and after the second dose. Following complete vaccination, both naive and previously infected individuals developed comparably robust SARS-CoV-2 spike antibodies and variable levels of cross-reactive antibodies to seasonal coronaviruses. However, the strength and frequency of SARS-CoV-2 neutralizing antibodies in naive individuals were lower than in previously infected individuals. After the first vaccine dose, one-third of previously infected individuals lacked neutralizing antibodies; this was improved to one-fifth after the second dose. In all individuals, neutralizing antibody responses against the Alpha and Delta variants were weaker than against the reference strain. Our findings support future tailored vaccination strategies against emerging SARS-CoV-2 variants as mRNA-vaccine-induced neutralizing antibodies are highly variable among individuals.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Cross Reactions , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibody Formation , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Coronavirus/immunology , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
9.
mSphere ; 6(4): e0027521, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1371850

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has now caused over 2 million deaths worldwide and continues to expand. Currently, much is unknown about functionally neutralizing human antibody responses and durability to SARS-CoV-2 months after infection or the reason for the discrepancy in COVID-19 disease and sex. Using convalescent-phase sera collected from 101 COVID-19-recovered individuals 21 to 212 days after symptom onset with 48 additional longitudinal samples, we measured functionality and durability of serum antibodies. We also evaluated associations of individual demographic and clinical parameters with functional neutralizing antibody responses to COVID-19. We found robust antibody durability out to 6 months, as well as significant positive associations with the magnitude of the neutralizing antibody response and male sex and in individuals with cardiometabolic comorbidities. IMPORTANCE In this study, we found that neutralizing antibody responses in COVID-19-convalescent individuals vary in magnitude but are durable and correlate well with receptor binding domain (RBD) Ig binding antibody levels compared to other SARS-CoV-2 antigen responses. In our cohort, higher neutralizing antibody titers are independently and significantly associated with male sex compared to female sex. We also show for the first time that higher convalescent antibody titers in male donors are associated with increased age and symptom grade. Furthermore, cardiometabolic comorbidities are associated with higher antibody titers independently of sex. Here, we present an in-depth evaluation of serologic, demographic, and clinical correlates of functional antibody responses and durability to SARS-CoV-2 which supports the growing literature on sex discrepancies regarding COVID-19 disease morbidity and mortality, as well as functional neutralizing antibody responses to SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antibody Formation/immunology , COVID-19/virology , Cohort Studies , Female , Humans , Immunization, Passive/methods , Male , Middle Aged , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Young Adult
10.
Sci Immunol ; 5(48)2020 06 11.
Article in English | MEDLINE | ID: covidwho-595199

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that first emerged in late 2019 is responsible for a pandemic of severe respiratory illness. People infected with this highly contagious virus can present with clinically inapparent, mild, or severe disease. Currently, the virus infection in individuals and at the population level is being monitored by PCR testing of symptomatic patients for the presence of viral RNA. There is an urgent need for SARS-CoV-2 serologic tests to identify all infected individuals, irrespective of clinical symptoms, to conduct surveillance and implement strategies to contain spread. As the receptor binding domain (RBD) of the spike protein is poorly conserved between SARS-CoVs and other pathogenic human coronaviruses, the RBD represents a promising antigen for detecting CoV-specific antibodies in people. Here we use a large panel of human sera (63 SARS-CoV-2 patients and 71 control subjects) and hyperimmune sera from animals exposed to zoonotic CoVs to evaluate RBD's performance as an antigen for reliable detection of SARS-CoV-2-specific antibodies. By day 9 after the onset of symptoms, the recombinant SARS-CoV-2 RBD antigen was highly sensitive (98%) and specific (100%) for antibodies induced by SARS-CoVs. We observed a strong correlation between levels of RBD binding antibodies and SARS-CoV-2 neutralizing antibodies in patients. Our results, which reveal the early kinetics of SARS-CoV-2 antibody responses, support using the RBD antigen in serological diagnostic assays and RBD-specific antibody levels as a correlate of SARS-CoV-2 neutralizing antibodies in people.


Subject(s)
Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Immunodominant Epitopes/immunology , Pneumonia, Viral/diagnosis , Protein Domains/immunology , Spike Glycoprotein, Coronavirus/chemistry , Zoonoses/blood , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/virology , Humans , Kinetics , Mice , Mice, Inbred BALB C , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , Protein Binding , Rabbits , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Serologic Tests , Zoonoses/virology
11.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-260045

ABSTRACT

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte , Pneumonia, Viral/immunology , Betacoronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Convalescence , Coronavirus Infections/blood , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Reactions , Humans , Leukocytes, Mononuclear/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/metabolism , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL